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It is assumed that the source of the conducting gas is the plane x = 
= 0, the gas moving along the x-axis. At distances x = +l from the 

source l i e  conducting planes, in which the currents flow along the y- 

axis into an external load R and are driven by an external emf E ~ These 

planes are absolutely permeable  to the gas, so the magnetic field set 

up by the currents is directed along the z-axis ,  along which also lies a 

steady magnetic  field H 0. The system is unbounded in the x- and y- 

directions, so we will  consider an external circuit  consisting of resis- 

tance R per unit height and an external emf E* applied to a part of the 

plane of unit height and of width l in y. The following assumptions 
are made: 

1) The gas conductivity is finite and is dependent on the tempera- 
ture T: 

o l ~ o  = ( ~ /  To) ~ (n  >1 0).: 
(1) 

2) The gas is ideal,  and thermal conductivity and viscosity are neg- 

lected. 

3) The magnetohydrodynamics approximation applies. 

Here the following are the dimensionless equations for the motion of 

the gas, the distribution of the magnet ic  field in the medium, and the 

current in the external circuit:  

g_ t [ O0 , u O0'~ Ou Pe Oh Puh  Oh 
, , -  t~ ~- ~] + g ~  o-~=- ~ + o~' ] = g O ,  

1 
08 Oh 0 S hd~ + ri = E~ (~),  o~Oh-- Bmz~ ( u h - -  e), 0~ 0~ ' 0~ (2) 

o 
in which the dimensionless quantities are defined as follows: 

_~ v /~P T H g - - - - ,  u ~ - - ,  h ~  
po vo Po '  O = - -  To' ~ '  

r cE  cE  ~ 4 ~ I  ceR 
r ~ -  , e = 7 ~ ,  E~= i-- -- 

~o VoHo 

~0 t C p ,  VO ~ = ~ - ,  Z = ~ - ,  •  M o =  

p __ Ho ~ R m  ~ 4~aoVo/ 
4r~Po ' - - ~ - - "  

Thesca lesfor thephys ica lvar iab les  are p~, v0, P0, and T ~ (the max-  

imum values of these quantities at the exit from the source), H0 (the 

constant component of the external magnetic  field), o0 (the conductivity 

at To), and l .  
The veloci ty  has only an x-component, the electr ic  field E only a 

y-component,  and the magnetic  field H only a z-component. 
The boundary conditions for the gasdynamie quantities are se tby the  

source output, while those for the electromagnetic quantities are set by 

the conditions for reflection of perturhations at  g = 0.2: 

~(o ,  ~) = o ,  h ( l ,  ~) = i + ~(~). (~) 

We seek a periodic solution to (2) subject to the condition that the 
external emf El('r) is a periodic function of time. We consider the case 
in which the gasdynamic quantities at the exit  from the source are con- 

stant: 

] = g = u = l  for ~ = 0 .  
(4) 

We solve (2) with (3) and (4) as power series in ~: 

rt~ m 

1 (~, ~) = t + ~ 1~ (~) k~, g (~, ~) = l + ~gv. (~) ~ ,  
k=l k~l 

m 

o(~, T ) = I  + ~ % ( , ) ~ ,  ~(~,~)=~ + ~ , ~ ( ~ ) ~ ,  

m ra h ~k+I 
h (~, ~) = ~, hk (T) ~k, ~ (~, ~) = - -  N Oh;. 

~=o ~ o~/~ + t " 
(6) 

Here m is an integer defining the order of approximation. The expres- 
sion for ~(g,r) is derived from the sixth equation of (2) with allowance 
for (3). 

We substitute into (2) with n = i the expressions of (5) for f, g, O, 

u, h, and ~, and equate terms with equal powers of g. 

If we restrict the series of (fi) to m = 2, we have the following re- 

lations for the t ime  coefficients: 

h x = Rmho, ho- ~ .  ~ [h o" -~- Rrnho 4 t + M~ (t  - -  x) Shoo ,1 

S = P R  m , /1 = Mo~ (t --  x) - -  t Shoe , 
I --  M o  ~ 

__ Mo ~ ( x - -  t )  + x  o ~  ~ ~ S hoho'- -  uo- + 00-, 
O - - - -  ( t - - M o ~  O- o - o  ' 1 - - M o  ~ ' 

Ox ~ Mo" ~ Sho e 
1 - -  MO ' 

+ Moo- (• - -  t) 08 = i + xMoo- Shoh o, S B  m hoo- __ .1 So-ho~ __ 
1 - -  M o  ~ - -  ~ ( t  - -  Mo") ~" 

S 
- -  Pho% + (1 - -  uMo "~) u2, , us : 't - -  M g  z h~ 

u2 2• + 1 -- Mo z (z - -  l) Shoh o, + ~ SRmhoZ + 
2•  ( t  - -  M o  ~ 

+ 3 + M o  ~ [•  - -  2 + ( l  - -  •  ( t  - -  Mo~)] 
2 (1 - -  M d )  "~ S:ho*, 

(6) 

with the prime denoting differentiation with respect to r. 
We see from (6) that a l l  the coefficients in the series of (5) are ex- 

pressed in terms of h0U) (the magnetic field in the plane g = 0) and 

derivatives of this. The solution is evidently meaningful for M0 < 1 or 

M o >  1. 
The equations for ho(r) are derived from the last equation of (2) to- 

gether with (3), the result being 

6 
he" -}- pho" -~- qho = ~ (r + El) --  5"q) (ho, ho'), (7) 

nm 

(ho, ho') = 31  + Mo e (I - -  • ho ~ (ho" + rho), 
t - -  Mo ~ 

6r (8) 

We write E 1 as 

El = E0 s ia  ~z, o = ~ t / v o ,  
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in which Eo is the d imensionless  a m p l i t u d e  and w is the dimensionless  

frequency.  
We seek a per iod ic  solution to (7) by successive approximat ion ,  on 

the  assumption tha t  S << 1 in the  nonl inear  expression r  The 

i t e ra t ion  formula can  be wri t ten as 

d l f (q  - -  o')~ + p~o)~ 

S[e'':" Sg~(ho~. h@)e-~,':d,r--e','~ S ,(hoDh'or~,e'-'~.'~d,~] , +~ 

cq = ~/~ (~ - -  p), ' a9 = - -  ~/~ (L + p), L = l f p  ~ - -  4q, (9) 

in which k is the order of approximat ion .  

The assumption R m << 1 is involved in  approx imat ing  the solut ion 

by three terms.  More terms must  be taken  in  (5) i f  the R m increase .  

The n u m e r i c a l  analysis  has been performed for the case  M 0 << 1, 
with m = 3 in (5) (four terms). The t i m e  coeff ic ients  of these four 

terms are  

h 3 = 1IS R m (1/2 l~ra~ho 4- Rraho" 4- 

+ (x + 2) • ~h SRraho ~ 4- a/~ 5"Zhoa), 

fs = __ I/~ S {% Bmhoho" -+- 2Rm~ho ~" 4- 

+ S [@ + 2) • + 4Bmh~ + % Sho~] ho}, 

0z = ~A S (t - -  x) ~-a [1]z Rmhoho" __ hs,*~ 4- ShoSho,], 

2x - -  I S,h0aho; 4- 6S[traho 4 + + ~  

+ ~1~ S~'ho ~ + ~h • 
i 

We obta in  the coeff ic ients  of the second and third terms from (6) 

i f  we  neg l ec t  the terms conta in ing  M 0. The function b~(z) is def ined 

by 

ho,, + pho, 4- qho= t2  (r 4- E1) - -  Sq~ (ho, ho', ho"), 
R m (2 4- Rm) 

i n  which 

(hs, ho', ho") = X 

r• + 0 +s;,.o X L 12~ 

N hobs' + ~ no 4- (t + s/s Bra)fho ~ + S (s/~ ho, 4- rh0) hoS ' 

p = 6  2 + n ~  (i + r) + V~ B,~ ~ (t + 2r + V~ n ~ )  
Rm 2 4- R m ' 

(10) 

(11) 

6/" 
q = B m (2 4- Rm) (2 + 2B m 4- IRrau -}- XARmZ). (12) 

In the first and second approximat ions  we have  

t2 
hol (1:) = )Tra (2 + Rm) X 

[, ( X T +  ] [ (q_o~)~4-p~o .  sin o ~ + a r e t g  , (13) 

12r 
ho~ (~) = Bm (2 + Rra ~ q 4- SB9 4- B1 sin (or  4- 81) 4- 

+ B~ sin (2o~ + 88) 4- Ba sin (3or + 8s)~ (14) 

Here 

B~ = lh  (as - -  a4 + 2as) / q, 

BI = {[A1 + S (A2 4- ~hAs)] z + S"' (A3 + lhAg)~I'h, 

Ba = S (A~ ~ 4- Ss~) th, B~ = S [(As 4- 1/~A~)2 + (AT - -  a/4A~)e]%, 

a - -  o~ S (As 4- IhAg) 
61 = arc tg  ~ 4- arc tg A1 4- S (A2 4- ahAs) ' 

A5 
52 = arc tg-A-~, 

4A~ - -  A~ 
5a = arc tg  4As 4- As ' 

A~ = Q1-1 {(q - -  o~)2al - -  oa~ - -  6P~-ko2q [p~ - -  q + 

+ o200q  - -  9oDl as - -  112oa7 + lh (q - -  o~) a~}, 
As = ~1 -~ [~al  + (q - -  ~ ' )  (a~ + 1/~a7) + 

+ 1/2oa~ + 6f~ - I  (10o ~ + p~ - -  2q) po~agl, 

A~ = ~ h ~  -~ [2 (q - -  4(o ~) a~ + .po (a~ + as)l, 

As = 1/.zf2s -1 [4oas + (q - -  4o) ~) (a~ + a~)l , 

A~ = ~[~f~-~ [3c0a7 4- (q - -  9o s) as], 

A~ = 1/~O~-z [3oa~ - -  (q - -  9o) ~) a~], 

As ---- .%-~ (q - -  903 s) as, A~ -~ 3O~-l/xaa~, 

~ z  = (q - -  O~) ~ 4 -  P%)~", f ~  ~ (q - -  90)") s 4 -  9 P  ~O~", 

tls = (q - -  4(~) ~ + 4p'-o% 

7 % 4- 2 
- -  o 2 - -  t 2 n  j a ~ A l '  al = L(3 + 5Bin) r 

( • + 2 r R m ) ,  

[.~- z 1 a~A~ a~ = aA~ (0 3 - -  (3 -4- 5Rm) r 
aa~  a ~ L 6 z  " ' 

( x 4 - 2  o ~ +  34-5Rra ) •  
a s =  \ t2• ~ r  A1 ~, as= ~ o~aAi, 

a : - - ~  A3~(t 5 x 4- 2 r.Rm ) 
+ -Z- "%~ + ~ 2 -  

"g -'.- 2 3 -}- 5B m 
as = - - ) . T  o2AI a~.=- ra ~, 2 ~• 3 

i2r  12go 
a - -  Rm (2 4- Rm) q ' A~= Rm (2 + Bm) t)l '/' " 

The quant i f ies  p and q are  def ined by ( t l )  and (12), respec t ive ly .  

Consider the resonance condi t ion ,  i n i t i a l l y  v ia  the  f i r s t - approx imat ion  

solut ion of (13), which is the l inear  solut ion for the t i m e  va r i a t ion  in 
the m a g n e t i c  f ie ld  at g = 0. 

It follows from (10) and (18) that  the ex te rna l  dr iv ing force has the 

constant  component  12r/Rm(2 + Rm) and the s inusoidal  component  

12Eo/Rm(2 + Rm), and i t  produces a constant  de f lec t ion  of i2 r /Rm(2  + 

+ Rm) q together  with a s inusoidal  osc i l l a t ion  of the s a m e  frequency but 

a different  a m p l i t u d e  and phase.  
We d iv ide  the a m p l i t u d e  in  the second te rm in (13) by the va lue  

for w = 0 to ge t  the ga in  K, which charac te r i zes  the dynamic  suscept i -  
b i l i t y  of the system with respect  to the  ex te rna l  force: 

K(/Q = [(t - -  ~2)2 + v2~l- i /~  

(~ = o / g~' ,  ~ = p / K S )  (15) 

We have from (15) that  K(0) = 1, K(~~ = 0 for any v. If v >_q~, i .e . ,  

p _>g-~, then K(~t) decreases for a l l  ~. If v < "/-2, i .e .  p < ~ ,  then 
K(/~) has its m a x i m u m  at g = 1 - - v z /2 , ,  
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Then for p _> ~ ' ~  (high res is tance coeff ic ient )  there  is no [esonance,  

whi le  p < ~ ' ~ ' a l l o w s  resonant osc i l la t ions  of f requency to, = ~/q --pZ]2, 

which corresponds to a ga in  

i 
l a" v ~ - ' I ' -  -~- (q - -  K , = - - 4 " (  - -  / 4 " j  - -  1/4~)-'l/z 

This shows tha t  K,--~ ,o and w,--~ 4"q-for p--~ 0, i . e . ,  the resonance 

wi l i  be more  impor t an t  for p smal l  and for resonant frequencies c lo se to  
4q .  

It  is r ead i ly  seen from (11) and (12) that  p > ~ always for R m < 1, 
so resonant osc i l la t ions  do not  occur in the system, and K(/a) decreases 

m o n o t o n i c a l l y  from 1 to 0 as p goes from 0 to ,o 
These  results app ly  also for f in i te  M~ ~ 1, s ince  the  p and q of (8) 

are  not  dependent  on Mo, and so p > q'2q for R m < 1, as for M 0 << 1. It 
can be  shown that  the osc i l la t ions  wi l l  be nonresonant in this case also 

i f  the boundary condit ions for the gasdynamic  quant i t ies  are  taken as 
0 = ~ = 1 for g = 0 and ] = 1 for ~ = 1. Al lowance  for the non l inear i ty  

causes K(p) to decrease  more  rapidly  as ~ increases,  as Fig. 1 shows via  

K(~) (circles)  for v 2 = 30, S = 0 ( l inear  approximat ion)  and KsO) = 

= BI/BIo ( t r iangles)  for S = 0.08 and v z = 80, in which Blis the amp l i t ude  

for the first ha rmonic  in  the solution of (10), whi le  Bl0 is the va lue  a t  

w = 0. Then K s ~  ) = K(~) when 8 = 0. 
N u m e t i e a l  ca lcu la t ions  have  been performed; Figs. 2 - 7  show some 

results for M0 << 1. Figures 2 - 5  i l lus t ra te  the changes in  O and ]du r ing  

one period a t  the ex i t  (~ = 1) for E 0 = 1, r = 0.5, P = 0.2, x = 5 /3 ,  and 

various R m and w. The  osc i l la t ions  in  the system parameters  a re  not 

s inusoidal ,  a l though the dr iving force is .  
Figure 6 shows AO and A f ( t h e  scales  of the  var ia~ons  f r o m m a x i -  

m u m  to m i n i m u m  for 00") and ] ( r ) )  as functions of w for E0 = 1, r = 0.5, 
P = 0.2, R m = 0.4, ~ = 5/8. T h e t w o q u a n t i t i e s  decrease  monotonica l ly ,  

because  the osc i l la t ions  are  not resonant.  Figure 7 i l lustrates  

"% = "~-~- [ t - - 0  (1, x)] d% 
o 

0 
the p e r i o d - m e a n  differences between 0 at  the ent rance and exi t  to the  

channe l  (and the same  for f )  as functions of o: for the same E 0, r, P, 
R m and :~. This means  that  rh is n e g a t i v e  throughout this f requency 
range for the  g iven  E0, r, P, R m and x ,  i . e . ,  t he  ave rage  gas t emper -  
a ture  a t  the exi t  is higher  than tha t  a t  the in le t ,  and so the gas receives  

energy  from the  e l ec t romagne t i c  f ield source. 
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