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It is assumed that the source of the conducting gas is the plane x =
= 0, the gas moving along the x-axis, At distances x = &I from the
source lie conducting planes, in which the curents flow along the y-
axis into an external load R and are driven by anexternalemf E°, These
planes are absolutely permeable to the gas, so the magnetic field set
up by the currents is directed along the z-axis, along which also lies a
steady magnetic field Hy. The system is unbounded in the x- and y-
directions, so we will consider an external circuit consisting of resis-
tance R per unit height and an external emf E® applied to a part of the
plane of unit height and of width I in y. The following assumptions
are made:

1) The gas conductivity is finite and is dependent on the tempera-
ture T:

6/ 6, =(T/T" (n2>0).
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2) The gas is ideal, and thermal conductivity and viscosity are neg-
lected.

3) The magnetohydrodynamics approximation applies.

Here the following are the dimensionless equations for the motion of
the gas, the distribution of the magnetic field in the medium, and the
current in the external circuit:
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Thescales for the physical variables are py, vy, Py, and T (the max-
imum values of these quantities at the exit from the source), Hy (the
constant component of the external magnetic field), o (the conductivity
at Ty), and 1.

The velocity has only an x-component, the electric field E only a
y-component, and the magnetic field H only a z-component,

The boundary conditions for the gasdynamic quantities are setby the
source output, while those for the electromagnetic quantities are set by
the conditions for reflection of perturbations at & = 0.2:

&0, 7) = 0, h(1, T = 1 + i(2). (3)

We seek a periodic solution to (2) subject to the condition that the
external emf Ey(7) is a periodic function of time. We consider the case
in which the gasdynamic quantities at the exit from the source are con-
stant:

f=g=u=1for £=0.
g u or @

We solve (2) with (3) and (4) as power series in &:
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Here m is an integer defining the order of approximation. The expres-
sion for e(£,7) is derived from the sixth equation of (2) with allowance
for (3).

We substitute into (2) with n = 1 the expressions of (5) for £, g, 9
u, h, and ¢, and equate terms with equal powers of £.

If we restrict the series of (5) to m = 2, we have the following re-
lations for the time coefficients:
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with the prime denoting differentiation with respect to 7.

We see from (8) that all the coefficients in the series of (5) are ex-
pressed in terms of hy(7) (the magnetic field in the plane £ = 0) and
derivatives of this. The solution is evidently meaningful for My < 1 or
M, > 1.

The equations for hy(7) are derived from the last equation of (2) to-
gether with (3), the result being
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We write E; as

Ey = E, sin o1, o= QI/vy



in which ¥ is the dimensionless amplitude and w is the dimensionless
frequency.

We seek a periodic solution to (7) by successive approximation, on
the assumption that § « 1 in the nonlinear expression ¢(hg,hg). The
iteration formula can be written as
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in which k is the order of approximation.
The assumption Ry, <« 1 is involved in approximating the solution
by three terms. More terms must be taken in (5) if the Ry, increase.
The numerical analysis has been performed for the case My« 1,
with m = 3 in (5) (four terms). The time coefficients of these four
terms are
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We obtain the coefficients of the second and third terms from (6)
if we neglect the terms containing My. The function hy(t} is defined

by
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The quantities p and q are defined by (11) and (12), respectively.
Consider the resonance condition, initially via the first-approximation
solution of (13), which is the linear solution for the time variation in
the magnetic field at £ = 0.

It follows from (10) and (13) that the external driving force has the
constant component 12r/Rp(2 + Ryyy) and the sinusoidal component
12E/Rp(2 + Ryp), and it produces a constant deflection of 12r/Ry(2 +
+ Rm)q together with a sinusoidal oscillation of the same frequency but
a different amplitude and phase.

We divide the amplitude in the second term in (13} by the value
for w = 0 to get the gain K, which characterizes the dynamic suscepti-
bility of the system with respect to the external force:

K(w) = [(t — WP + vt
=o/Vg,v=rp/VJ. (15)

We have from (15) that K(0) = 1, K(=) = 0 for any v. If v z‘/'?—. ie.,
p =V2q, then K(u) decreases for all u, If v <V'2, i.e. p<+v%q, then
K(u) has its maximom at u = 1 —-v%/2,.
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Then forp = v3q (high resistance coefficient) there is no fesonance,
while p < V3q allows resonant oscillations of frequency w, = ¥q =p72,
which corresponds to a gain

i = q
Ky=— (=Y = < (e —ap)

This shows that K,— © and w,~> ¥'q for p—> 0, i.e., theresonance
will be more important for p small and for resonant frequencies closeto
Vq.

It is readily seen from (11) and (12) that p > ¥ 2q always for Ry < 1,
so resonant oscillations do not occur in the system, and K(u) decreases
monotonically from 1 to 0 as ¢ goes from 0 to =,

These results apply also for finite Mg = 1, since the p and q of (8)
are not dependent on My, and so p> v'2q for Ry, < 1, as for My < 1. It
can be shown that the oscillations will be nonresonant in this case also
if the boundary conditions for the gasdynamic quantities are taken as
6=p=1for&=0and f=1for&=1. Allowance for the nonlinearity
causes K(u) to decrease more rapidly as i increases, as Fig. 1 showsvia
K(u) (circles) for v* =30, S =0 (linear approximation) and Ks(p) =
= By/By, (triangles) for § = 0.08 and v? = 30, in which Byis the amplitude
for the first harmonic in the solution of (10), while Byq is the value at
w= 0., Then Ky) = K(#) when § = 0,

Numerical calculations have been performed; Figs. 2-7 show some
results for My <« 1. Figures 2-5 illustrate the changes in6 and f during
one period at the exit (§ = 1) for Eg=1, r=0.5, P=0.2, x= 5/3, and
various Ry, and w. The oscillations in the system parameters are not
sinusoidal, although the driving force is.

Figure 6 shows A8 and Af (the scales of the variations from maxi-
mum to minimum for 8(t) and f(7)) as functions of w for Ey = 1, r =0.5,
P=0.2, Rm = 0.4, % = 5/3. Thetwo quantities decrease monotonically,
because the oscillations are not resonant. Figure 7 illustrates
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the period-mean differences between 6 at the entrance and exit to the
channel (and the same for f) as functions of w for the same Ey, 1, P,
Ry, and ®. This means that 1y is negative throughout this frequency
range for the given Ey, 1, P, Ry and %, i.e., the average gas temper-
ature at the exit is higher than that at the inlet, and so the gasreceives
energy from the electromagnetic field source.

19 September 1967 Novosibirsk



